
The publication of Shor’s quantum algorithm for efficiently factoring numbers
(1994 and 1997) was the key event that stimulated many theoretical and experi-
mental investigations of quantum computation. One of the reasons why this

algorithm is so important is that the security of widely used public-key cryptographic
protocols relies on the conjectured difficulty of factoring large numbers. An elementary
overview of these protocols and the quantum algorithm for breaking them is provided in
Artur Ekert (1998).1 Here, we outline the relationship between factoring and the power-
ful technique of phase estimation. This relationship helps in understanding many of the
existing quantum algorithms and was first explained in Richard Cleve et al. (1998). This
explanation was motivated by Alexei Kitaev’s version (1995) of the factoring algorithm.

The factoring problem requires writing a whole number N as a product of primes.
(Primes are whole numbers greater than 1 that are divisible without remainder only by 1
and themselves.) Shor’s algorithm solves this problem by reducing it to instances of the
order-finding problem, which will be defined below. The reduction is based on basic
number theory and involves efficient classical computation. At the core of Shor’s algo-
rithm is a quantum algorithm that solves the order-finding problem efficiently. In this
case, an algorithm is considered efficient if it uses resources bounded by a polynomial
in the number of digits of N. For more information on the requisite number theory, see
any textbook on number theory (Bolker 1970, Hardy and Wright 1979).

We begin by showing that factoring reduces to order finding. The first observation is
that, to factor a whole number, it is sufficient to solve the factor-finding problem, whose
statement is, “Given a whole number N, find a proper factor of N if one exists. A factor
of N is a whole number f that satisfies N = fg for some whole number g. The factor f is
proper if f ≠ 1 and f ≠ N. For example, if N = 15, then 3 and 5 are its proper factors. For
some numbers, it is easy to find proper factors. For example, you can tell that N is even
from the least significant digit (in decimal or binary), in which case, 2 is a proper factor
(unless N = 2, a prime). But many numbers are not so easy. As an example, you can try
to find a factor of N = 149,573 by hand.2 You can complete the factorization of a whole
number by recursively applying an algorithm for the factor-finding problem to all the
proper factors found.

Before we continue the reduction of factoring to order finding, we will briefly
explain modular arithmetic, which both simplifies the discussion and is necessary to
avoid computing with numbers that have exponential numbers of digits. We say that a
and b are equal modulo N, written as a = b mod N, if a – b is divisible by N (without
remainder). For example, 3 = 18 mod 15 = 33 mod 15. Equality modulo N is well
behaved with respect to addition and multiplication. That is, if a = b mod N and c = d
mod N, then a + c = b + d mod N, and ac = bd mod N. For factoring N, we will be look-

38 Los Alamos Science Number 27 2002

From Factoring to Phase Estimation

From Factoring to Phase Estimation
A discussion of Shor’s algorithm

Emanuel Knill, Raymond Laflamme, Howard N. Barnum, Diego A. Dalvit, Jacek J. Dziarmaga,
James E. Gubernatis, Leonid Gurvits, Gerardo Ortiz, Lorenza Viola, and Wojciech H. Zurek

149,573= 373 ∗4012

1All the citations in this article have been referenced on pages 31 to 33 of the main article,
“Quantum Information Processing.”

ing for whole numbers a that are divisible by a proper factor of N. If a has this property,
then so does any b with b = a mod N. We therefore perform all arithmetic modulo N.
One way to think of all this is that we use only whole numbers a that satisfy
0 ≤ a ≤ N – 1. We can implement each arithmetic operation modulo N by applying
the operation in the usual way and then computing the remainder after division by N.
For example, to obtain ab mod N, we first compute ab. The unique c such that
0 ≤ c ≤ N – 1 and c = ab mod N is the remainder after division of ab by N. Thus,
c is the result of multiplying a by b modulo N. Consistent with this procedure, we can
think of the expression a mod N as referring to the remainder of a after division by N.

The second observation in the reduction of factoring to order finding is that it is suffi-
cient to find a whole number r with the property that r2 – 1 is a multiple of N, but r – 1
and r + 1 are not. Using the language of modular arithmetic, the property is expressed as
r2 = 1 mod N, but r ≠ 1 mod N and r ≠ –1 mod N. Because 1 mod N and –1 mod N are the
obvious square roots of 1 mod N, we say that r is a nontrivial square root of unity
(modulo N). For such an r, one can write r2 – 1 = (r – 1)(r + 1) = mN for some whole
number m. This implies that every prime factor p of N divides either (r – 1) or (r + 1) so
that either (r – 1) or (r + 1) is or shares a factor with N. Suppose that r – 1 is or shares
such a factor. Because r – 1 is not a multiple of N, the greatest common divisor of r – 1
and N is a factor of N. Since an efficient classical algorithm (the Euclidean algorithm)
exists for finding the greatest common divisor, we can easily find the desired proper factor.

The examples of N = 15 and N = 21 serve to illustrate the key features of the
algorithm. For N = 15, possible choices for r are r = 4 (42 – 1 = 1 ∗ 15), and
r = 11 (112 – 1 = 120 = 8 ∗ 15). For the first choice, the proper factors emerge immedi-
ately: 4 – 1 = 3, and 4 + 1 = 5. For the second, it is necessary to determine the greatest
common divisors (or gcd). Let gcd(x, y) stand for the greatest common divisor of x and
y. The proper factors are gcd(11 – 1, 15) = gcd(10, 15) = 5, and gcd(11 + 1, 15) =
gcd(12, 15) = 3. For N = 21, one can take r = 8 as 82 – 1 = 63 = 3 ∗ 21. In this case,
8 – 1 = 7 is a proper factor, and gcd(8 + 1, 21) = 3 is another.

For N even or a power of a prime, it is not always possible to find a nontrivial square
root of unity. Because both cases can be handled efficiently by known classical algo-
rithms, we can exclude them. In every other case, such numbers r exist. One way to find
such an r is to start from any whole number q, with 1 < q < N. If gcd(q, N) = 1, then
according to a basic result in number theory, there is a smallest whole number k > 1
such that qk – 1 = 0 mod N. The number k is called the order of q modulo N. If k is
even, say, k = 2l, then (ql)2 = 1 mod N, so ql is a (possibly trivial) square root of unity.
For the example of N = 15, we can try q = 2. The order of 2 modulo 15 is 4, which gives
r = 22 = 4, the first of the two choices in the previous paragraph. For N = 21, again with
q = 2, the order is 6: 26 – 1 = 63 = 3 ∗ 21. Thus, r = 23 = 8. We can also try q = 11, in
which case, with foresight, it turns out that 116 – 1 is divisible by 21. A possible prob-
lem appears, namely, the powers qk, which we want to compute, are extremely large.
But modular arithmetic can help us avoid this problem. For example, to find the order of
11 modulo 21 by direct search, we can perform the following computation: In general,
such a direct search for the order of q modulo N is very inefficient, but as we will see,

Number 27 2002 Los Alamos Science 39

From Factoring to Phase Estimation

11 121 5 21 16 16 21

11 11 11 11 16 21 11 5 21

55 21 3 21 8 21 8 21

11 11 11 11 8 21 4 21 4 21 4 21

11 11 11 11 4 21 2 21

11 11 11 11 2 21 1 21

2

3 2

4 3

5 4

6 5

= = ∗ + =

= ∗ = ∗ = ∗ −()
= − = − ∗ + =

= ∗ = ∗ = ∗ + =

= ∗ = ∗ =

= ∗ = ∗ =

mod

mod mod

mod mod mod

mod mod mod

mod mod

mod mod (1)

there is an efficient quantum algorithm that can determine the order.

A factor-finding algorithm based on the above observations is the following:

FACTORFIND(N)

Input: A positive, nonprime whole number N

Output: A proper factor f of N, that is, f is a whole number such that 1 < f < N and
N = fg for some whole number g.

1. If N is even, return f = 2.

2. If N = pk for p prime, return p.

3. Randomly pick 1 < q < N – 1.

a. If f = gcd(q, N) > 1, return f.

4. Determine the order k of q modulo N using the quantum order-finding algorithm.

a. If k is not even, repeat at step 3.

5. Write k = 2l and determine r = ql mod N with l < r < N.

a. If 1 < f = gcd(r – 1, N) < N, return f.

b. If 1 < f = gcd(r + 1, N) < N, return f.

c. If we failed to find a proper factor, repeat at step 3.

The efficiency of this algorithm depends on the probability that a randomly chosen q
at step 3 results in finding a factor. An analysis of the group of numbers q that satisfy
gcd(q, N) = 1 shows that this probability is sufficiently large.

The main problem left to be solved is finding the order of q mod N. A direct search
for the order of q mod N involves computing the sequence

1 → q → q2 mod N → . . . → qk–1 mod N → 1 = qk mod N . (2)

This sequence can be conveniently visualized as a cycle whose length is the order q mod N
(refer to Figure 1).

To introduce the quantum algorithm, we first associate the logical quantum states |0〉,
|1〉, . . . |N – 1〉 with the numbers 0, 1,. . . , N – 1. The map f that takes each number on
the cycle to the next number along the cycle is given by f(x) = qx mod N. For q
satisfying gcd(q, N) = 1, the map f permutes not only the numbers on the cycle but
all the numbers modulo N. As a result, the linear operator f̂ defined by f̂ |x〉 = |f(x)〉 =
|qx mod N〉 is unitary. The quantum algorithm deduces the length of the cycle for q by
making measurements to determine the properties of the action of f̂ on superpositions of
the states |qs mod N〉. To illustrate the basic ideas, we work out the example of N = 15
and q = 8. The action of f̂ on the states |1〉, |8〉, |4〉, and |2〉 in the cycle of 8 mod 15 is

40 Los Alamos Science Number 27 2002

From Factoring to Phase Estimation

completely determined by the eigenstates and eigenvalues of f̂ . For cyclicly acting per-
mutations, a basis of eigenstates is given by the Fourier basis for the space spanned by
the states in a cycle. For the cycle of interest, the Fourier basis consists of the states

(3)

The phases of the lth state of the cycle occurring in the sum for |ψm〉 can be written as
ilm. It follows that f̂ |ψm〉 = im|ψm〉, that is, the eigenvalue of f̂ for |ψm〉 is im. Note that,
in complex numbers, the powers of i are all the fourth roots of unity. In general,
the Fourier basis for the cycle . . . → |ql mod N〉 → . . . consists of the states
|ψm〉 = Σlωlm|ql mod N〉, where ω = ei2π /k is a primitive kth root of unity. (The com-
plex number x is a primitive kth root of unity if k is the smallest whole number k > 0
such that xk = 1. For example, both –1 and i are fourth roots of unity, but only i is primi-
tive.)

It is, of course, possible to express the logical state |1〉 using the Fourier basis

(4)

The key step of the quantum algorithm for order finding consists of a measurement to
estimate a random eigenvalue of f̂ , whose associated eigenstate occurs in the expression
for |1〉 in terms of the Fourier basis. If the eigenvalue found is a kth root of unity, we
infer that the cycle length is divisible by k and check (using a classical algorithm)
whether this is the order of q. In the example, the random eigenvalues are 1 (the only
primitive first root of unity), i and –i (primitive fourth roots of unity), and –1 (the primi-
tive second root of unity). The order is found if the random eigenvalue is a fourth root of
unity, which happens with probability 1/2 in this case.

1
1

2 0 1 2 3= + + +()ψ ψ ψ ψ .

ψ

ψ

ψ

ψ

0

1

2

3

1

2
1 8 4 2

1

2
1 8 4 2

1

2
1 8 4 2

1

2
1 8 4 2

= + + +()
= + − −()
= − + −()
= − − +()

 ,

 ,

 ,

 .

i i

i i

and

Number 27 2002 Los Alamos Science 41

From Factoring to Phase Estimation

1

The Cycle of q mod N The Cycle of 8 mod 15

1

4

2 8

qqk–1 mod N

q2 mod N

. . .

qk–2 mod N

Figure 1. Multiplicative
Cycles of q mod N
Each number on a cycle is

obtained from the previous one

by multiplication by q mod N.

The quantum algorithm for obtaining an eigenvalue is called the phase estimation
algorithm, and it exploits a more general version of the phase kickback we encountered
in the solution of the parity problem. The phase kickback transfers the eigenvalue of
an eigenstate of f̂ to a Fourier basis on a number of additional qubits called helper or
ancilla qubits. Which Fourier state results is then determined by a subroutine called
the measured quantum Fourier transform. We introduce these elements in the next
paragraphs. Their combination for solving the general order-finding problem is
illustrated on page 45.

Figure 2 shows how to kick back the eigenvalue of an eigenstate of f̂ using a network
implementing the controlled-f̂ operation. The network in Figure 2 can be used with input
|1〉 on the second system. From Equation (4) and the superposition principle, it follows
that the output correlates the different phase kickback states with the four eigenvectors
|ψm〉. That is, the network implements the following transformation:

(5)

The hope is that a measurement of the first qubit can distinguish between the four possi-
ble phases that can be kicked back. However, because the four states are not mutually
orthogonal, they are not unambiguously distinguishable by a measurement. To solve this
problem, we use a second qubit and a controlled-f̂ 2 as shown in Figure 3.

The four possible states |um〉 that appear on the ancilla qubits in the network of
Figure 3 are the Fourier basis for the cycle 0 → 1 → 2 → 3 → 0 and are therefore
orthonormal. If we apply the network of Figure 3 with |1〉 instead of |ψm〉 at the lower
input, the output correlates the four |ψm〉 in the superposition with the |um〉, which makes
the information about the eigenvalues of f̂ available in the Fourier basis of the two ancil-
la qubits. This approach has the advantage that the states are known, whereas in the
Fourier basis for the cycle of q mod N, the states depend on the numbers in the cycle,
which are not known in advance (except in very simple cases, such as the example we
are working with).

To learn one of the eigenvalues of f̂ , the last step is to make a measurement in
the Fourier basis. For one qubit representing the binary numbers 0 and 1, the Fourier
basis is 1/√2(|0〉 + |1〉) and 1/√2(|0〉 – |1〉), which is constructed as discussed after

1

2 2

1

2 2

0

1

2

3

0
0

1
1

2
2

3
3

� �

�

� �

� �

� �

+() +

+

+

→

+()
+ +()

+ +()
+ +()

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

.

i

i

i

i

�

42 Los Alamos Science Number 27 2002

From Factoring to Phase Estimation

1
2

� �+
1
2

+ i m

ψm
ψmf̂

Figure 2. Phase
Estimation with One Qubit
The input is a product state
on one ancilla qubit and on a
second quantum system, as
shown. The state |ψm〉 on the
second system is an eigen-
state of f̂. For the example
provided in Equation (3), the
eigenvalue is im. A controlled-
f̂ operation is applied to the
input, that is, f̂ is applied to
the second system condition-
al on |��〉 for the ancilla qubit.
In the bra-ket notation, the
total operation can be written
as |��〉〈��| + |��〉〈��|f̂ (system labels
have been omitted). Because
f̂ changes only the phase of
its input, the second system
is unchanged, but the phase
modifies the ancilla qubit’s
superposition as shown.

Equation (3) but using the square root of unity ω = –1 instead of the fourth root i.
To make a measurement that determines which of the two basis vectors is present, it
suffices to apply the Hadamard transform H and make a standard measurement, just
as we did twice in the network of Figure 2 in the article “Quantum Information
Processing” on page 23. A more complicated network works with two qubits represent-
ing the binary numbers from 0 to 3. Such a network is shown in Figure 4.

To see how the network extracts the bits in the index of |ua〉, we can follow the states
as the network is executed. The input state at checkpoint 1 in Figure 4 is given by

(6)

In the last sum, the relevant numbers have been fully expanded in terms of their binary
digits to give a flavor of the general principles underlying the measured Fourier trans-
form. The next step of the network applies a Hadamard gate to the qubit carrying the
most significant digit. To understand how it succeeds in extracting a0, the least signifi-

φ 1

0

1

2

3

0 2 0 2 2 2

0 2 1 2 2 2

1 2 0 2

1

2

0

1

2

3

1

2

1 0
1

1
0

0

1 0
1

1
0

0

1 0
= =

+

+

+

=
+

+

∗

∗

∗

∗

∗ + ∗() ∗ + ∗()
∗ + ∗() ∗ + ∗()

∗ + ∗
u

i

i

i

i

i

i

i
a

a

a

a

a

a a

a a

��

��

(() ∗ + ∗()
∗ + ∗() ∗ + ∗()+

a a

a a
i

1
1

0
0

1 0
1

1
0

0

2 2

1 2 1 2 2 2

��

��

 .

Number 27 2002 Los Alamos Science 43

From Factoring to Phase Estimation

Figure 3. Phase
Estimation with Two
Qubits
Using two qubits ensures dis-
tinguishability of the eigenval-
ues of f̂ for the states |ψm〉. The
states of the input qubits are
used to represent the numbers
from 0 to 3 in binary. The most
significant bit (the two’s digit
in binary representation) is
carried by the top qubit. That
is, we make the following iden-
tification: |0〉 = |����〉, |1〉 = |����〉, |2〉
= |����〉, and |3〉 = |����〉. It follows
that the network has the effect
of applying f̂ m conditional on
the input qubits’ logical state
being |m〉.

Z–i H

Z a0

a1

H

Checkpoints: 1 2 3 4

u a a2 1 0∗ +

Figure 4. Measured
Quantum Fourier
Transform on Two Qubits
The two qubits represent the
numbers 0, 1, 2, and 3 . If the
input is one of the Fourier
states |ua〉, where the binary
digits of a are determined by
a = 2 * a1 + a0, then the meas-
urement outcomes are a0 and
a1, as shown. The numbers
under the network are check-
points used for analysis.
[For details on the measured
Fourier transform, see Griffiths
and Niu (1996).]

1
2

0

1

2

3

1

2

0

1

2

3

0

1

2

3

+

+

+

=
+

+

+

um

m

m

m

m

i

i

i

i

ψmψm f̂ f 2ˆ

cant bit of a, let b with binary digits b0 and b1 represent one of the logical states of the
two qubits. As before, the most significant bit b1 is represented by the top/first qubit that
the first Hadamard gate is applied to. The phase of |b〉 in Equation (6) is given by
i(b1∗21+b0∗20)(a1∗21+a0∗20). Next, we determine how the phase depends on b1:

(7)

It follows that, if a0 = 0, the phase does not depend on b1, and if a0 = 1, it changes sign
with b1. This sign change can be detected by performing the Hadamard transform and
measuring, as can be seen explicitly by computing the state after the Hadamard trans-
form at checkpoint 2:

(8)

The phases still show a dependence on a0 via the terms ib0∗20∗a0∗20
= ib0a0. The purpose

of the phase-shift gate conditioned on the measurement outcome is to remove that
dependence. The result is the following state on the remaining qubit at checkpoint 3:

(9)

The final Hadamard transform followed by a measurement therefore results in the bit a1,
as desired.

The elements that we used to determine the order of 8 modulo 15 can be combined
and generalized to determine the order of any q modulo N with gcd(q, N) = 1. The gen-
eral network is shown in Figure 5. Two features of the generalization are not apparent
from the example. First, in order for the quantum network to be efficient, an efficient
implementation of the controlled f̂ 2l operation is required. To obtain such an implemen-
tation, first note that to calculate f2l (x) = q2l x mod N, it suffices to square q repeatedly

φ 3
0 2 2 1 2 2

0 1

1

2

1

2
1 1

1

2
1

0
1

1 0
1

1

1 1

1

= +

= −() + −()()
= + −()()

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

i ia a

a a

a

� �

� �

� � .

φ 2
0 2 2 2

0
1 2 2 2

0

0
0 2 2 2 1 2 2 2

1

2

1

2

0
1

1
0

0 0
1

1
0

0

0
1

1
0

0 0
1

1
0

0

=

=

∗ ∗ ∗ + ∗() ∗ ∗ ∗ + ∗()

∗ ∗ ∗ + ∗() ∗ ∗ ∗ + ∗()

i a i a

a i i

a a a a

a a a a

� �

� �

+

+ .

i i i

i i i

i

b b a a b a a b a a

b a b a b a a

1
1

0
0

1
1

0
0

1
1

1
1

0
0

0
0

1
1

0
0

1 1
2

1 0
1 0

0
1

1
0

0

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

4

∗ + ∗() ∗ + ∗() ∗ ∗ ∗ + ∗() ∗ ∗ ∗ + ∗()
∗ ∗ ∗ ∗ ∗ ∗ ∗ + ∗()

=

=

=

 (() ()
= −()

∗ ∗ ∗ ∗ ∗ + ∗()

∗ ∗ ∗ ∗ + ∗()

b a b a b a a

b a b a a

i i

i

1 1 1 0 0
0

1
1

0
0

1 0 0
0

1
1

0
0

2 2 2 2

2 2 2
1 .

44 Los Alamos Science Number 27 2002

From Factoring to Phase Estimation

modulo N using (q2m)2 mod N = q2m+l mod N until we obtain q2l mod N. The result is
then multiplied by x mod N. This computation is efficient. For any given q, the
computation can be converted to an efficient network consisting of Toffoli gates
and controlled-not gates acting on the binary representation of x. The conversion can
be accomplished with standard techniques from the theory of reversible classical
computation. The result is an efficient network for ^f 2l. Basic network theory can then be
used to implement the controlled version of this operation (Barenco et al. 1995).

To understand the second feature, note that we were lucky to anticipate that the order
of 8 modulo 15 was a power of 2, which nicely matched the measured Fourier transform
we constructed on two qubits. The measured Fourier transform on m ancilla qubits can
detect exactly only eigenvalues that are powers of the 2mth root of unity eiπ/2m–1. The
phase kicked back by the controlled operations corresponds to a kth root of unity. Given
a Fourier state on the cycle of q mod N, the resulting state on the ancilla qubits has
phases that go as powers of a kth root of unity. Fortunately, the ancilla’s Fourier basis is
such that the measured Fourier transform picks up primarily those basis states whose
generating phase is close to the kickback phase. Thus, we are likely to detect a nearby
ω = eilπ/2m–1. It is still necessary to infer (a divisor of) k from knowledge of such an ω.
Because we know that the order k is bounded by N, the number of possible phases
kicked back that are near the measured ω is limited. To ensure that there is only one
possible such phase, it is necessary to choose m such that 2m > N2. (See also Figure 5.) �

Number 27 2002 Los Alamos Science 45

From Factoring to Phase Estimation

ZH H0

H0
...

...

. . .

. . .

H0

H

H0

Z

H Z

H Z

Phase kickback

State
preparation

Measured Fourier transform

1 f̂ f̂ 2 f̂
m2 2− 1−

f̂
m2

e i− π / 2

e i m− –π / 2 2

e i m− π / 2

e i m− –π / 2 3

e i m− –π / 2 2–1

e i− π / 2

a0

a1

am–2

am–1

The number m of qubits used for the phase kickback has to
be chosen such that m > 2 * log2(ku), where ku is a known
upper bound on the order k of q mod N. Because N > k, one
can set m = 2 log2(N), where x is the least whole number
s ≥ x. There is an eigenvalue λl = ei2lπ/k of one of the
Fourier eigenvectors associated with the cycle of
q mod N such that the number a, whose binary digits are
the measurement outcomes, satisfies eiπa/2m–1 ≈ ei2π l /k.
More precisely, with probability above .405, there exists l
such that |a/2m – l/k | ≤ 1/2m+1 (Cleve et al. 1998). Because
any two distinct rational numbers with denominator at most
ku differ by at least 1/k2

u > 2/2m+1, the theory of rational

approximations guarantees that we can uniquely determine
the number l/k. There is an efficient classical algorithm
based on continued fractions that computes r and s with
r/s = l/k and s = k/gcd(l, k). The probability that gcd(l, k) = 1
is at least 1/ (log2(k) + 1), in which case we learn that
s = k and this is the order of q mod N. Note that the com-
plexity of the network depends on the complexity of
implementing the controlled f̂ 2l operations. Because these
operations can be implemented efficiently, the network
and hence the determination of the order of q mod N are
efficient in the sense that, on average, polynomial resources
in log2(N) suffice.

Figure 5. Network for Quantum Order Finding and Phase Estimation

